2012 Consumer Confidence Report

Water System Name:	Calipatria State Prison	Report Date:	May 21, 2013
0	er quality for many constituents as ring for the period of January 1 - D		
Este informe contiene i entienda bien.	nformación muy importante sobr	e su agua potable. Tradú	zcalo ó hable con alguien que l
Type of water source(s)	in use: Treated Potable Water		F
Name & location of sour	ce(s): Golden State Water Com	pany, 631 S. Sorensen Av	e., Calipatria, CA 92233
	·		
			26
Drinking Water Source	Assessment information: Golden	State Water Company's 201	2 Consumer Confidence Report
(CCR) contains all require	red source water information for the	e Calipatria State Prison. A	Copy of Golden State Water
Company's 2012 CCR is	attached to this document and all (Calipatria State Prison CCRs	s posted.
Time and place of regula	rly scheduled board meetings for pr	ublic participation: N/A (State Prison)

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

For more information, contact: Charles Woodland, CPM II

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Phone: (760) 348-7000 Ext. 5305

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

TADIE 1	SAMDI INC	DECIH TO	SHOWING T	HE DETECT	TION OF C	COLIFORM BACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation	MCL MCL		MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a mo.)	0	More than 1 sam month with a det		0	Naturally present in the environment
Fecal Coliform or E. coli	(In the year)	0	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>		0	Human and animal fecal waste
TABLE 2	– SAMPLIN	G RESUL	rs showing	THE DETE	CTION OF	LEAD AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	20	ND	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	20	0.19	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
,	TABLE 3 -	- SAMPLI	NG RESULTS	FOR SODIU	JM AND H	ARDNESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	**	**	**	none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	**	**	**	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report.

^{**} Pleaser refer to the attached Golden State Water Company 2012 CCR for this information

	- XIV					
TABLE 4 – DETE	ECTION OF	CONTAN	INANTS WIT	TH A PRIM	<u>IARY</u> DRIN	KING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Chlorine (as CL2)(mg/L)	2012	0.97mg/L 4 Quarter Avg.	0.88-1.01 mg/L	4.0 mg/L	N/A	Drinking water disinfectant added during and for the treatment process.
TTHM [Total of four Trihalomethanes] (µg/L)	2012	59.6 μg/L 4 Quarter Avg.	48.7-83.4 μg/L	80 μg/L	ND	By-product of drinking water chlorination.
HAA5 [Total of five Haloacetic Acids] (µg/L)	2012	0.5 μg/L 4 Quarter Avg.	ND-10.0 μg/L	60 μg/L	ND	By-product of drinking water chlorination.
TABLE 5 – DETEC	CTION OF	CONTAM	NANTS WITH	I A SECO	NDARY DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
**	3					
**						
	TABLE 6	- DETEC	TION OF UNR	EGULAT	ED CONTAI	MINANTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level		Health Effects Language
**						

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Calipatria State Prison] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

2012 SWS CCR Form Revised Jan 2013

^{**} Please refer to the attached Golden State Water Company 2012 CCR for this information

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT						
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language		
NONE						

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES							
Microbiological Contaminants (complete if fecal-indicator detected) Total No. of Detections Sample Dates MCL [MRDL] (MCLG) [MRDLG] Typical Source of Contamination (MRDLG)							
E. coli	(In the year)		0	(0)	Human and animal fecal waste		
Enterococci	(In the year)		TT	n/a	Human and animal fecal waste		
Coliphage	(In the year)		TT	n/a	Human and animal fecal waste		

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL	NOTICE OF FECAL IND	ICATOR-POSI	TIVE GR	OUND WATER SOURCE	SAMPLE
		8			
					9 2 2
	SDECIAL NOTICE FOR	IINCODDECTI	ED SIGNI	FICANT DEFICIENCIES	
	SPECIAL NOTICE FOR	UNCORRECTI	D SIGIVI.	FICANT BEFTCIENCIES	
			100	:	
5 3	VIOLA	TION OF GRO	UND WA	TER TT	
TT Violation	Explanation	Duratio	n	Actions Taken to Correct the Violation	Health Effects Language
			2		
		H.			

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHO	WING TREATMENT OF SURFACE WATER SOURCES
Treatment Technique ^(a) (Type of approved filtration technology used)	·
Turbidity Performance Standards ^(b) (that must be met through the water treatment process)	Turbidity of the filtered water must: 1 - Be less than or equal to0.5_ NTU in 95% of measurements in a month. 2 - Not exceed0.5_ NTU for more than eight consecutive hours. 3 - Not exceed5.0_ NTU at any time.
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	100%
Highest single turbidity measurement during the year	.22 NTU
Number of violations of any surface water treatment requirements	NONE

- (a) A required process intended to reduce the level of a contaminant in drinking water.
- (b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.
- * Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below.

Summary Information for Violation of a Surface Water TT

VIOLATION OF A SURFACE WATER TT								
TT Violation Explanation Duration Actions Taken to Correct the Violation								
			Explanation Duration Actions Taken to Correct					


Summary Information for Operating Under a Variance or Exemption

N/A		
	 1	

Calipatria Water System

Consumer Confidence Report on Water Quality for 2012

iolden State Water Company is pleased to present our Annual Water Quality Report. As your water rovider, we are proud to report that your drinking water met all federal and state standards for calendar year 2012.

ringing you clean drinking water is serious business. We strictly adhere to federal and state drinking water quality uidelines required by the United States Environmental Protection Agency (USEPA), the California Department of ublic Health (CDPH) and the California Public Utilities Commission. To ensure the quality of your drinking water, olden State Water tests for more than 230 regulated and unregulated elements in our water systems. Golden tate Water's industry professionals periodically take samples to monitor water quality throughout the distribution ystem. We spent more than half a million dollars in 2012 on laboratory tests to meet regulatory standards and rovide you with high quality drinking water.

any drinking water standard is ever compromised, Golden State Water is required to take immediate action, notify ou guickly and restore normal service.

/e pride ourselves on getting the job done right. Over the last 80 years, we've successfully built relationships with ne industry's best. Our team of experts is equipped to provide customers with the most efficient and effective ervice possible. Golden State Water strives to constantly improve our water production and delivery systems, nd adequately maintain wells, pumps and pipelines. Our philosophy is to invest in comprehensive preventive naintenance programs so that our water infrastructure reliably provides you with high quality drinking water, 4 hours per day, 7 days per week.

ou, our customer, are our number one priority. Our Customer Service Center Representatives are available answer your water questions and address your concerns day or night, 24 hours a day, 7 days a week. Visit /www.gswater.com to learn more about your customer service area, water quality, rebates and water-use efficiency.

s your water provider, we'd like to remind you that efficient water use remains one of the best and least-costly rays to maintain a reliable source of high quality drinking water now and for future generations.

In behalf of the men and women of Golden State Water Company who arve you, thank you for providing us the opportunity to be your water rovider. Please call our 24-hour Customer Service Center with any uestions or feedback about this report at 1-800-999-4033.

incerely,

obert Sprowls
resident and Chief Executive Officer

Perry Dahlstrom Mountain Desert District Manager

About the Company

Golden State Water Company, a subsidiary of American States Water Company (AWR), provides water service to approximately 1 out of every 36 Californians located within 75 communities throughout 10 counties in Northern, Coastal and Southern California (approximately 256,000 customers). The Comp

2013

any also distributes electricity to more than 23,000 customers in the Big Bear recreational area of California. AWR's contracted services subsidiary, American States Utility Services, Inc., provides operations, maintenance and construction management services for water and wastewater systems located on military bases throughout the country.

where Does My water Come From?

/ater delivered to customers in the Calipatria System is carried om the C West Lateral Gate #38 Canals, of the East Highline Canal Imperial Irrigation District, and is treated at Golden State Water ompany's Calipatria Surface Water Treatment Plant.

Blossary of Terms

laximum Contaminant Level (MCL)

he highest level of a contaminant that is allowed in drinking rater. Primary MCLs are set as close to the public health goals nd maximum contaminant level goals as is economically and echnologically feasible. Secondary MCLs are set to protect the dor, taste and appearance of drinking water.

alifornia Notification Level (NL)

ion-regulatory, health-based advisory levels established by the alifornia Department of Public Health (CDPH) for contaminants in rinking water for which an MCL has not been established.

laximum Contaminant Level Goal (MCLG)

he level of contaminant in drinking water below which there is o known or expected risk to health. Maximum contaminant level oals are set by the United States Environmental Protection Agency JSEPA).

laximum Residual Disinfectant Level (MRDL)

he highest level of a disinfectant allowed in drinking water. here is convincing evidence that the addition of a disinfectant is ecessary for control of microbial contaminants.

laximum Residual Disinfectant Level Goal (MRDLG)

he level of a drinking water disinfectant below which there no known or expected risk to health. MRDLGs do not reflect ne benefits of the use of disinfectants to control microbial ontaminants.

rimary Drinking Water Standard (PDWS)

ICLs and MRDLs for contaminants that affect health along with neir monitoring and reporting requirements and water treatment equirements.

ublic Health Goal (PHG)

he level of a contaminant in drinking water below which there is o known or expected risk to health. Public health goals are set by ne California Environmental Protection Agency (CalEPA).

egulatory Action Level (AL)

he concentration of a contaminant which, if exceeded, triggers eatment or other requirements that a water system must follow.

reatment Technique (TT)

required process intended to reduce the level of a contaminant in rinking water.

Iross Connection Control Program

olden State Water Company's Cross Connection Control Program rovides a level of certainty that the water in the company's istribution system is protected from possible backflow f contaminated water from commercial or industrial ustomers' premises. For additional information, visit www.gswater.com/protecting-our-drinking-water.

Golden State Water's top priority is to protect the quality of your water supply. In every one of our water systems, a team of highly-trained employees monitors water quality on an on-going basis to ensure that our

Measurements

Water is sampled and tested consistently throughout the year to ensure the best possible quality.

Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L).
- Parts per billion (ppb) or micrograms per liter (µg/L).
- Parts per trillion (ppt) or nanograms per liter (ng/L).
- Figure 6 Grains per gallon (grains/gal) A measurement of water hardnes often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (μS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

If this is difficult to imagine, think about these comparisons:

Parts per million: 1 second in 12 days 1 inch in 16 miles 1 drop in 14 gallons

Parts per billion: 1 second in 32 years

1 inch in 16,000 miles 1 drop in 14,000 gallons

Parts per trillion:

1 second in 32,000 years 1 inch in 16 million miles

10 drops in enough water to fill the Rose Bowl

If You Have Questions - Contact Us

For information about your water quality or to find out about upcoming opportunities to participate in public meetings, please contact our 24-hour Customer Service Center at 1-800-999-4033.

Visit us online at www.gswater.com or email us at customerservice@gswater.com.

Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo o hable con alguien que lo entienda bien.

	YOUR	WATER MEETS AL	LL CURRENT FE	DERAL AND ST	ATE REQUIREMEN	NTS
		Calipatria Wa	iter System -	– Source Wa	ter Quality	
Primary Standards - Health Based (units)	Primary MCL	PHG (MCLG)	Range of Detection	Average Level	Most Recent Sampling Date	Typical Source of Constituent
Turbidity						
Highest single measurement of the created surface water (NTU)	TT = 1.0	n/a	n/a	0.17	2012	Soil runoff
Lowest percent of all monthly readings ess than 0.3 NTU (%)	TT = 95	n/a	n/a	100	2012	Soil runoff
norganic Constituents						
Aluminum (mg/L)	1	0.6	ND - 0.18	ND	2012	Erosion of natural deposits; residue from some surface water treatment processes
Arsenic (µg/L)	10	0.004	2.6	2.6	2012	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes
3arium (mg/L)	1	2	0.1	0.1	2012	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Fluoride (mg/L)	2.0	1	0.1	0.1	2012	Erosion of natural deposits; water additive that promote strong teeth; discharge from fertilizer and aluminum factories
Radioactive Constituents						
Gross Alpha Activity (pCi/L)	15	(0)	5.2	5.2	2010	Erosion of natural deposits
Jranium (pCi/L)	20	0.43	4.8	4.8	2010	Erosion of natural deposits
Secondary Standards - Aesthetic (units)	Secondary MCL	PHG (MCLG)	Range of Detection	Average Level	Most Recent Sampling Date	Typical Source of Constituent
Aluminum (µg/L)	200	n/a	ND - 180	ND	2012	Erosion of natural deposits; residue from some surface water treatment processes
Chloride (mg/L)	500	n/a	130	130	2012	Runoff/leaching from natural deposits; seawater influence
ron (μg/L)	300	n/a	ND - 70	ND	2012	Leaching from natural deposits; industrial wastes
Specific Conductance (uS/cm)	1600	n/a	1198	1198	2012	Substances that form ions when in water; seawater influence
Sulfate (mg/L)	500	n/a	278	278	2012	Runoff/leaching from natural deposits; industrial waste
Total Dissolved Solids (mg/L)	1000	n/a	783	783	2012	Runoff/leaching from natural deposits
Other Parameters (units)	Notification Level	PHG (MCLG)	Range of Detection	Average Level	Most Recent Sampling Date	Typical Source of Constituent
Alkalinity (mg/L)	n/a	n/a	160	160	2012	
Calcium (mg/L)	n/a	n/a	91	91	2012	
Hardness [as CaCO3] (mg/L)	n/a	n/a	352	352	2012	The sum of polyvalent cations present in the water, generally magnesium and calcium; the cations are usually naturally occurring
Hardness [as CaCO3] (grains/gal)	n/a	n/a	21	21	2012	
Magnesium (mg/L)	n/a	n/a	34	34	2012	La contraction of the contractio
oH (pH units)	n/a	n/a	7.48 - 7.90	7.76	2012	
Potassium (mg/L)	n/a	n/a	5.8	5.8	2012	
Sodium (mg/L)	n/a	n/a	130	130	2012	Refers to the salt present in the water and is generally naturally occurring

Calipatria Water System — Distribution Water Quality							
Disinfection Byproducts and Disinfectant Residuals (units)	Primary MCL (MRDL)	PHG (MRDLG)	Range of Detection	Average Level	Most Recent Sampling Date	Typical Source of Constituent	
hlorine [as Cl2] (mg/L)	(4.0)	(4)	0.04 - 1.83	1.01	2012	Drinking water disinfectant added for treatment	
IAA5 [Total of Five Haloacetic Acids] ug/L)	60	n/a	12 - 26	19	2012	Byproduct of drinking water disinfection	
THMs [Total of Four Trihalomethanes]	80	n/a	39 - 110	73	2012	Byproduct of drinking water disinfection	
Inorganic Constituents (units)	Action Level	PHG (MCLG)	Sample Data	90th % Level	Most Recent Sampling Date	Typical Source of Constituent	
opper (mg/L)	1.3	0.3	None of the 20 samples collected exceeded the action level.	0.06	2010	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	

^{) =} Not Detected

ıCO3 = Calcium Carbonate

ource water Assessment

he San Diego office of the CDPH and the Imperial Irrigation istrict conducted source water assessments and watershed urveys in 2003 and 2008.

he C West lateral Gate #38 is part of the East Highline Canal. The ast Highline Canal is considered most vulnerable to,the following ctivities not associated with any detected contaminants:

Active and historic mining operations

Agricultural operations—animal feed lots, pesticide use, farm chemical distribution

Confirmed leaking underground storage tanks

Geothermal wells

Illegal dumping

Landfills/dumps

Military installations

copy of the assessment may be viewed at:

CDPH San Diego District Office 1350 Front St., Room 2050 San Diego, CA 92101

OI

GSWC Apple Valley Office 13608 Hitt Rd. Apple Valley, CA 92308

ou may request a summary of the assessment be sent to you y contacting:

CDPH San Diego District Office at 1-619-525-4159 For more details, contact Stacey Roberts at 1-800-999-4033.

-aboratory Analyses

hrough the years, we have taken thousands of water samples to etermine the presence of any radioactive, biological, inorganic, olatile organic, or synthetic organic contaminants in your drinking rater. The table we provide shows only detected contaminants in ne water.

ven though all the substances listed here are under the Maximum ontaminant Level (MCL), we feel it is important that you know xactly what was detected and how much of these substances were resent in your water. Compliance (unless otherwise noted) is based n the average level of concentration below the MCL. The state llows us to monitor for some contaminants less than once per year ecause the concentrations do not change frequently. Some of our ata, while representative, is more than a year old.

ead — If present, elevated levels of lead can cause serious health roblems, especially for pregnant women and young children. ead in drinking water is primarily from materials and components ssociated with service lines and home plumbing. Golden State /ater is responsible for providing high-quality drinking water, ut cannot control the variety of materials used in plumbing omponents. When your water has been sitting for several hours, ou can minimize the potential for lead exposure by flushing your ap for 30 seconds to two minutes before using water for drinking r cooking. If you are concerned about lead in your water, you nay wish to have your water tested. Information about lead in rinking water, testing methods and steps you can take to minimize xposure is available from the Safe Drinking Water Hotline at -800-426-4791 or at www.epa.gov/safewater/lead.

otal Trihalomethanes (TTHMs) — Some people who drink rater containing trihalomethanes in excess of the MCL over many ears may experience liver, kidney, or central nervous system roblems, and may have an increased risk of getting cancer.

urbidity — Turbidity is a measure of the cloudiness of the water. is monitored because it is a good indicator of the effectiveness of

KISK to Tap and Bottled Water

Drinking water, including bottled water, may reasonably be expected to contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the layers in the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, which can pick up substances resulting from the presence of animal or human activity.

To be certain that tap water is safe to drink, the USEPA and the CDPH prescribe regulations limiting the amount of contaminants in water provided by public water systems. United States Food and Drug Administration (USFDA) and CDPH regulations also provide the same public health protection by establishing limits for contaminants in bottled water.

Contaminants in Drinking Water Sources May Include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, and farming
- Pesticides and herbicides that may come from a variety of source such as agriculture, urban storm water runoff and residential use
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems
- Radioactive contaminants that can be naturally occurring or be the result of oil and gas production and mining activities

For People with Sensitive Immune Systems

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people, such as those individuals with cancer undergoing chemotherapy, those who have undergone organ transplants, those with HIV/AIDS or other immune system disorders, some elderly populations, and infants, can be particularly at risk from infections. These people should seek advice from their health care providers.

The USEPA and Centers for Disease Control issue guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants. To obtain a copy of these guidelines, please call the USEPA's Safe Drinking Water Hotline at 1-800-426-4791.

Connect with us to learn more!

Visit www.gswater.com to learn how to:

- Become a water conservation expert
- Learn more about available conservation rebates and programs
- Get the latest Water Quality Report for your area
- Understand your water bill and learn about payment options.

For additional information, please contact our 24-hour Customer Service Center at **1-800-999-4033** or email us at customerservice@gswater.com.